Code No.: 14467 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. (E.C.E.) IV-Semester Main & Backlog Examinations, July-2023

Electromagnetic Field Theory

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Q. No	Stem of the question	M		~-	
2	State the Coulomb's law of force between two point charges separated by the distance R	1 2		CO	PO/PS
1) 3-	Express curl of a vector A in Cylindrical coordinate system		2	1	1
ļ.	Draw the electric flux pattern due to (i) single point charge and (ii)	1	1	2	1
4.	Define the terms linear, homogeneous and isotropic with respect to	2	2	2	1
5	Find the magnetic field intensity due to infinite length current carrying conductor at a distance 0.5 m with current $I = 2A$ along z axis.	2	1	3	2
6	Find the magnetic field Intensity \vec{H} if Plane y=0 carries sheet current with density of \vec{K} =2.5az mA/m.	2	2	3	2
7.	Calculate skin depth of a material for which $\sigma=5$ S/m and μ r =2 at a frequency 1.25 GHz	2	1	4	2/2
8.	In free space $\vec{E}=16e^{-x/20}\sin{(2X10^8t-2x)a_z}$ V/m. Find the direction of propagation, wavelength, velocity of propagation and intrinsic	2	2	4	4/2
	Draw the equivalent circuit of transmission line with proper labeling of	2	2	5	1/2
O. 8	A parallel polarized wave is incident from air onto distilled water with $c_r = 81$. Find the Brewster's angle θ_B ?	2	2	5	2/2
	Part-B $(5 \times 8 = 40 Marks)$				
a) I	Derive the expression for \vec{E} due to the infinite line of	4	2	1	1
b) F	ind the electric field intensity \vec{E} due to infinite length coaxial cable at	4	3	1 -	2
	 (i) Inside the inner cylinder (ii) Between the inner and outer cylinders (iii) Out side the outer cylinder 				

, I A	an motential in the certain region is but	4	3	2	2
ay	Electric field intensity E at (2,3,3).	4	3	2	2
	point charge of 5 mC from point (2,1,5)	4	ی	_	
1	Find the work done to move a point charge of a point $A(4,-2,5)$ in the electric field $\vec{E} = 4\hat{a}_x + 3x^2\hat{a}_y + 2yz^2\hat{a}_z$				
	Derive the magnetic field intensity due to a infinite current sheet.	4	2	3	4
. a)	Derive the magnetic field interest,	4	3	3	2
(B)	Evaluate the inductance of a solenoid with length "l" and number of				
	turns "N"	4	2	4	4/2
1./a)	Formulate Maxwell's differential equations from the corresponding integral equations using Gauss Divergence theorem and Stokes	7	-	. 1997	
	theorem	4	3	4	2/2
b	What is the inconsistency of Ampere's circuital law and how it is rectified and derive the modified Ampere's Circuital law				
	Drave the Poynting vector theorem	4	2	5	4/2
5. ja)	State Poynting vector theorem and Prove the Poynting vector theorem				
	for electromagnetic wave	4	4	5	4/2
b)	Formulate the expression for reflection coefficient of electric field when the wave incident with normal incidence θ_i =0°.	4	-	,	
		4	4	1	2
(6. a)	Define Conservative property and show that electrostatic field is				
	conservative	4	4	2	1,2
h).	What are the applications of boundary conditions? Derive the boundary	4	4	2	
2 (1)	What are the applications of boundary conditions. Between dielectric and dielectric conditions for static electric fields between dielectric and dielectric media interface				
7.	Answer any two of the following:		1	3	2
	of finding the magnetic field intensity and	4	1	3	_
a)	express magnetic field intensity H. and magnetic vector p				
	terms of current elements Idl,		•	4	2/2
	Course equations? Derive wave equation 101	4	1	4	
b)	What are the advantages of wave equations: Berry electric filed starting from Faraday's law of electromagnetic induction	1			
	in differential form			3 5	4/2
	When the input impedance of a transmission line is given by	4		, ,	
	$Z_L + jZ_0 \tan \beta l$				
	$Z_{in}(l) = Z_0 \left[\frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l} \right]$	1			
	Calculate input impedance of with (i) short load, (ii) Matched load	1,			
	1-04			e Outcom	

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome;

. Diocia	T aval 1	20%
i)	Blooms Taxonomy Level – 1	35%
ii)	Blooms Taxonomy Level – 2	45%
iii)	Blooms Taxonomy Level – 3 & 4	